Unconjugated
The Tumour Microenvironment (TME) is pivotal for melanoma progression and contributes to therapy resistance. While dermal cell involvement is well established, the role of epidermal cells remains less defined. To explore the contribution of Normal Human Keratinocytes (NHKs) to melanoma biology, we investigated the modification of gene and protein expression of NHKs exposed to melanoma-conditioned medium or maintained in a co-culture system. The analysis focused on pathways related to proliferation, inflammation, Extracellular Matrix (ECM) remodelling, and cell adhesion. Due to the well-documented melanoma-fibroblast crosstalk, Normal Human Fibroblasts (NHFs) and Cancer-Associated Fibroblasts (CAFs) were used as comparative references. Keratinocyte gene expression changes under the influence of melanoma secretome only partially overlapped with those of NHFs and CAFs, indicating cell-type-specific responses. Exposure to melanoma-conditioned medium induced the upregulation of bFGF, CXCL-16, TIMP-2, and E-cadherin in NHKs, alongside downregulating TGF-ß and MMP-9. Although bFGF is a recognized pro-tumorigenic factor, the modulation of CXCL-16, TIMP-2, and TGF-ß may reflect a protective response. Notably, under co-culture conditions, NHKs exhibited a pronounced pro-inflammatory and ECM-remodelling phenotype, characterized by elevated production of cytokines (IL-1a, IL-1ß, and IL-8) and ECM-degrading enzymes (MMP-7, 9, 12, and 13), indicative of a pro-tumoral feature. Collectively, these findings underscore an active role for NHKs in melanoma initiation and progression.